Wednesday, 19 August 2020

Pass Filter Resonant Frequency

Quick Calculate: Ω   pF
Ω   pF    

R1(Ω)C1(pF)R2(Ω)C2(pF)Hz
1000001010000010159.15 KHz
1000001510000015106.1 KHz
100000221000002272.34 KHz
100000331000003348.23 KHz
100000471000004733.86 KHz
10000010010000010015.92 KHz
10000012010000012013.26 KHz
10000013010000013012.24 KHz
10000015010000015010.61 KHz
1000001801000001808.84 KHz
1000002201000002207.23 KHz
1000003301000003304.82 KHz
1000004701000004703.39 KHz
1000005601000005602.84 KHz
1000006801000006802.34 KHz
1000007501000007502.12 KHz
1000008201000008201.94 KHz
100000100010000010001.59 KHz
100000150010000015001.06 KHz
10000020001000002000795.77 Hz
10000022001000002200723.43 Hz
10000033001000003300482.29 Hz
10000047001000004700338.63 Hz
10000050001000005000318.31 Hz
10000056001000005600284.21 Hz
10000068001000006800234.05 Hz
1000001000010000010000159.15 Hz
1000001500010000015000106.1 Hz
100000220001000002200072.34 Hz
100000330001000003300048.23 Hz
100000470001000004700033.86 Hz
100000680001000006800023.41 Hz
10000010000010000010000015.92 Hz
10000015000010000015000010.61 Hz
1000002000001000002000007.96 Hz
1000002200001000002200007.23 Hz
1000003300001000003300004.82 Hz
1000004700001000004700003.39 Hz
1000006800001000006800002.34 Hz
100000100000010000010000001.59 Hz
100000150000010000015000001.06 Hz
100000200000010000020000000.8 Hz
100000220000010000022000000.72 Hz
100000330000010000033000000.48 Hz


The above table can be used for first Order any Order Pass filter 
Based on

f = 1 / 2π√(R1*C1*R2*C2)

if C1 = C2 and R1 = R2

f = 1 / 2πRC


Let's take an example of a Low Pass filter, let's say values are
R1 = 1000000 Ω
R2 = 1000000 Ω
C1 = 100000 pF
C2 = 100000 pF
Then cut-off frequency would be 15.92 Hz.

The roll-off behavior for high frequency would be



For additional information on all standard Ceramic Capacitor Codes.


No comments:

Post a Comment